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LETTER TO THE EDITOR 

The Luttinger model with a finite-range potential 
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Department of Theoretical Physics, Central Institute of Physics. R-76900, Msgurele, 
Bucharest, PO Box 5206, Romania 

Received 25 July 1989 

Abstract. It is proved that the physics of the Luttinger model is insensitive to the variation 
of the potential range. New exact Luttinger Green functions are computed. 

A long time ago, with the aim of describing the physical behaviour of a one-dimensional 
(LD) system of electrons, Tomonaga proposed a ‘bifermionic’ model [l], for which 
Luttinger developed a technically more convenient version (21. The only condition 
imposed by Tomonaga for obtaining the bifermionic model (in fact, for finding simple 
commutation relations for the density operators ~ ( “ 1 )  was that the potential must be a 
long-range one; let us call it the Tomonaga restriction. Soon after, the Tomonaga- 
Luttinger (TL) model was diagonalised by Mattis and Lieb for any potential satisfying a 
condition imposed on its strength-the Mattis-Lieb restriction, independent of Tomon- 
aga’s. So, the TL is obtained as a relevant physical model if the Tomonaga restriction is 
satisfied, and can be solved exactly if the Mattis-Lieb restriction is fulfilled. 

It is well known that the physical behaviour of the TL model may be obtained, to a 
certain extent, without making aparticular choice of the potential [l, 3-51. However, the 
most interesting information-the phase diagrams, for instance, which can be obtained if 
the correlation functions are known-requires making a certain choice for the potential, 
in order to find compact formulae. In fact, to avoid exceedingly large computational 
difficulties, a contact potential is chosen (a delta function)-and so a zero-range one. 

It is natural to ask whether this choice, being in contradiction with the Tomonaga 
restriction, does not destroy the relevance of the results for describing the physical 
behaviour of the system. In other words, we may ask ourselves if the physical behaviour 
of the model is sensitive or not to the variation of the potential range. 

We shall prove that the answer is negative-in the following way. We shall choose an 
arbitrary-range potential, compute the corresponding Green functions and demonstrate 
that they have the same singularities as the Green functions corresponding to a contact 
potential. This conclusion may be extended to all correlation functions, at T = 0 or 
T > 0. Also, we shall prove that these conclusions hold for all the physically interesting 
potentials. 
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Let us consider a Luttinger model in which the undressed Fermi velocity is uF,  and 
the potential has the form 

V,(x) = V(sin ax)/x a > 0. (1) 

Its range is characterised by the parameter a, and 

lim V,(x) = nVa(x) 

lim Va(x) = 0. 

a+ 21 

a-0  

The Green functions (generally, the correlation functions) may be easily evaluated 
using the bosonisation method [6,7]. Let us introduce the notations 

r (*)  0 = a[i(sgn t )  (x - u F t )  - a] 

r(*) = a[i(sgn t){x * u F [ l  - (v/2uF)2]1'2t} - an 

s = 6{[1 - (v/2uF)2]-1'2 - 1} 

(4) 

( 5 )  

(6) 

where a is an infinitesimally small parameter (the cut-off parameter of the Luther- 
Peschel-Mattis bosonisation scheme [6]). Following the standard methods [8], we find 
(see [9] for details) 

Gl(X, t> = - - i (~V~(X, t )Vl(O,  0)) 

= GY)(x, t) exp(Ei(r6f)) - Ei(ri-1)) 

x exp[s2 (-2Ei( - aa) + Ei(r(+)) + Ei(r(-)))] (7) 

where 

cc e-XY 
Ei( - y )  = - I - dx R e y  > 0 

l X  

and G(,')(x, t) is the Luttinger Green function corresponding to the delta potential 
obtained from (1) for asymptotic values of the parameter a, according to (2). 

From general considerations, 

G ~ ( x ,  t )  = Gi(x, -t). (9) 

In spite of the daunting appearance of (7), it is clear that, as the Ei functions have no 
singularities, GI and GI") have the same pole structure. It is easy to see that any 
correlation function may be cast in a similar form: 

C(X, t )  = C("(X, t> Leg (x, 4 (10) 

where C(') is the correlation function for the TLmodel with apotential obtained according 
to (2) andf,,,is a regular function-more exactly an exponential similar to that appearing 
in (7). 

Although (10) was obtained at T = 0, it is clear that a similar computation at T # 
0 [SI leads to the same factorisation, for any correlation function. So, equation (10) 
maintains its form for T > 0, too. 
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Similar results may be obtained for another potential with a simple Fourier transform: 

U(x) = U @ )  + V(sin ax)/x. (11) 

g = (1/2vF) -k G =  u/2nvF (12) 

s = &[(I - g y  - 11 (13) 

0 = vF(1 - g2)1'2 (14) 

r(') = a[i(sgn t )  ( x  f wt) - a] (15) 

Putting 

S = 4[(1 - G2)-'l2 - 11 

Q = vF(1 - G2)1'2 

R(') = a[i(sgn t ) (x  * a t )  - a] 
we find for the Luttinger Green function corresponding to the potential (11): 

G,(x, t )  = G(,")(x, t)  exp[(l + s2)Ei(r(+)) + (1 + S2)Ei(R(+)) + s2Ei(r(-)) 

- S2Ei(R(-)) + 2(S2 - s2)Ei( -aa) ]  (16) 
i.e. an expression similar to (7). In particular, equation (16) confirms and generalises in 
all orders the results of Theumann [lo] referring to the analytic dependence of GI on 
the parameter Vfrom (11). 

Any realistic potential may be approximated as a linear combination of functions 
like (11)-which is evident in the Fourier space. So, the same computational scheme 
may be developed for any potential and an equation like (10) remains valid, in the 
general case. 

The fact that some major aspects of the physical behaviour of the system are inde- 
pendent of the particular form of the potential was pointed out from the beginning by 
Tomonaga [ 11. Gutfreund and Schick [4] demonstrated that the shape of the momentum 
distribution function is only determined, at T = 0, by the q = 0 Fourier component of the 
potential. Here we have generalised such conclusions for the entire physical behaviour 
of the model and for any temperature. 

As is well known, the first Luttinger Green function was computed by 
Theumann [lo]. The expressions (4) and (16) obtained here are probably the only 
Luttinger Green functions for which compact formulae may as yet be obtained, at least 
using the bosonisation technique. 

We can sum up this Letter as follows. The TL model describes well a LD metal for 
long-range potentials; but the physics of the model is the same, irrespective of the 
potential range; so, any potential may be used in specific calculations. 

These considerations support the idea that, in many-body problems, the form of the 
two-body potential may be surprisingly irrelevant. 

The author is indebted to Dr M Apostol and Dr I BulboacB for useful discussions and 
comments. 
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